Optimal Learning Rates for Clifford Neurons
نویسندگان
چکیده
Neural computation in Clifford algebras, which include familiar complex numbers and quaternions as special cases, has recently become an active research field. As always, neurons are the atoms of computation. The paper provides a general notion for the Hessian matrix of Clifford neurons of an arbitrary algebra. This new result on the dynamics of Clifford neurons then allows the computation of optimal learning rates. A thorough discussion of error surfaces together with simulation results for different neurons is also provided. The presented contents should give rise to very efficient second–order training methods for Clifford Multilayer perceptrons in the future.
منابع مشابه
A class of competitive learning models which avoids neuron underutilization problem
In this paper, we study a qualitative property of a class of competitive learning (CL) models, which is called the multiplicatively biased competitive learning (MBCL) model, namely that it avoids neuron underutilization with probability one as time goes to infinity. In the MBCL, the competition among neurons is biased by a multiplicative term, while only one weight vector is updated per learnin...
متن کاملNeural Network Modelling of Optimal Robot Movement Using Branch and Bound Tree
In this paper a discrete competitive neural network is introduced to calculate the optimal robot arm movements for processing a considered commitment of tasks, using the branch and bound methodology. A special method based on the branch and bound methodology, modified with a travelling path for adapting in the neural network, is introduced. The main neural network of the system consists of diff...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملCoordinate independent update formulas for versor Clifford neurons
We study the optimization of neural networks with Clifford geometric algebra versor and spinor nodes. For that purpose important multivector calculus results are introduced. Such nodes are generalizations of real, complex and quaternion spinor nodes. In particular we consider nodes that can learn all proper and improper Euclidean transformations with so-called conformal versors. Thus a single n...
متن کاملOptimization of Clifford Circuits
We study optimal synthesis of Clifford circuits, and apply the results to peep-hole optimization of quantum circuits. We report optimal circuits for all Clifford operations with up to four inputs. We perform peep-hole optimization of Clifford circuits with up to 40 inputs found in the literature, and demonstrate the reduction in the number of gates by about 50%. We extend our methods to the opt...
متن کامل